16=(25x)/(x^2-6)

Simple and best practice solution for 16=(25x)/(x^2-6) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 16=(25x)/(x^2-6) equation:



16=(25x)/(x^2-6)
We move all terms to the left:
16-((25x)/(x^2-6))=0
Domain of the equation: (x^2-6))!=0
x∈R
We multiply all the terms by the denominator
-(25x+16*(x^2-6))=0
We calculate terms in parentheses: -(25x+16*(x^2-6)), so:
25x+16*(x^2-6)
We multiply parentheses
16x^2+25x-96
Back to the equation:
-(16x^2+25x-96)
We get rid of parentheses
-16x^2-25x+96=0
a = -16; b = -25; c = +96;
Δ = b2-4ac
Δ = -252-4·(-16)·96
Δ = 6769
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-25)-\sqrt{6769}}{2*-16}=\frac{25-\sqrt{6769}}{-32} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-25)+\sqrt{6769}}{2*-16}=\frac{25+\sqrt{6769}}{-32} $

See similar equations:

| #+2m-8m=3-6m | | 10x-3x=-42 | | 5(x-7)-20=2x+7 | | 20-3(x+7)=2x+6 | | 6m=6m=40=12=12 | | 2(2x+1)=9+4x-7 | | 27-3m=6m+9 | | 4x+3/4=x+6 | | Y-10=-3(x-1) | | 9^2-2x=9^3x-6 | | 2x+3+5x=7x-4 | | 21r^2+13r-20=0 | | 5/6x+4/3=2/3x | | 200+10^x+3=1600 | | R=(160-0.20x)x | | 5(x+1)=-x=4(x-1)=9 | | 60x^2+33x-9=0 | | X2-4x-60=0 | | 121y^2+49=0 | | -3+5v=12 | | 3(x+7)-20=2x+6 | | 2v-2=-12 | | 2-2x3+3=() | | 8=4y-4 | | 7x+8/4=3x-13/5 | | 12=3x+(x-4) | | 7/2+3x/2=-1 | | 81x-11=117x+7 | | (3n)=n+30 | | 6x+11=x+8 | | x3+2-5x=0 | | 200+10^x-3=1600 |

Equations solver categories